3,872 research outputs found

    To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.

    Get PDF
    Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness

    Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny.

    Get PDF
    The mammary gland undergoes cycles of growth and regeneration throughout reproductive life, a process that requires mammary stem cells (MaSCs). Whilst recent genetic fate-mapping studies using lineage-specific promoters have provided valuable insights into the mammary epithelial hierarchy, the true differentiation potential of adult MaSCs remains unclear. To address this, herein we utilize a stochastic genetic-labelling strategy to indelibly mark a single cell and its progeny in situ, combined with tissue clearing and 3D imaging. Using this approach, clones arising from a single parent cell could be visualized in their entirety. We reveal that clonal progeny contribute exclusively to either luminal or basal lineages and are distributed sporadically to branching ducts or alveoli. Quantitative analyses suggest that pools of unipotent stem/progenitor cells contribute to adult mammary gland development. Our results highlight the utility of tracing a single cell and reveal that progeny of a single proliferative MaSC/progenitor are dispersed throughout the epithelium.This work was supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (B.L-L. and C.J.W). F.M.D. was funded by a National Health and Medical Research Council CJ Martin Biomedical Fellowship (GNT1071074). O.B.H. was funded by a Wellcome Trust PhD studentship (105377/Z/14/Z)

    J-type Carbon Stars in the Large Magellanic Cloud

    Full text link
    A sample of 1497 carbon stars in the Large Magellanic Cloud has been observed in the red part of the spectrum with the 2dF facility on the AAT. Of these, 156 have been identified as J-type (i.e. 13C-rich) carbon stars using a technique which provides a clear distinction between J stars and the normal N-type carbon stars that comprise the bulk of the sample, and yields few borderline cases. A simple 2-D classification of the spectra, based on their spectral slopes in different wavelength regions, has been constructed and found to be related to the more conventional c- and j-indices, modified to suit the spectral regions observed. Most of the J stars form a photometric sequence in the K - (J-K) colour magnitude diagram, parallel to and 0.6 mag fainter than the N star sequence. A subset of the J stars (about 13 per cent) are brighter than this J star sequence; most of these are spectroscopically different from the other J stars. The bright J stars have stronger CN bands than the other J stars and are found strongly concentrated in the central regions of the LMC. Most of the rather few stars in common with Hartwick and Cowley's sample of suspected CH stars are J stars. Overall, the proportion of carbon stars identified as J stars is somewhat lower than has been found in the Galaxy. The Na D lines are weaker in the LMC J stars than in either the Galactic J stars or the LMC N stars, and do not seem to depend on temperature.Comment: 19 pages, 21 figures, Latex; in press, MNRA

    Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots

    Get PDF
    Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest

    Body mass index trajectories in young adulthood predict nonâ alcoholic fatty liver disease in middle age: The CARDIA cohort study

    Full text link
    Background & AimsNonâ alcoholic fatty liver disease is an epidemic. Identifying modifiable risk factors for nonâ alcoholic fatty liver disease development is essential to design effective prevention programmes. We tested whether 25â year patterns of body mass index change are associated with midlife nonâ alcoholic fatty liver disease.MethodsIn all, 4423 participants from Coronary Artery Risk Development in Young Adults, a prospective populationâ based biracial cohort (age 18â 30), underwent body mass index measurement at baseline (1985â 1986) and 3 or more times over 25 years. At Year 25, 3115 had liver fat assessed by nonâ contrast computed tomography. Nonâ alcoholic fatty liver disease was defined as liver attenuation â ¤40 Hounsfield Units after exclusions. Latent mixture modelling identified 25â year trajectories in body mass index per cent change (%Î ) from baseline.ResultsWe identified four distinct trajectories of BMI%Î : stable (26.2% of cohort, 25â year BMI %Π = 3.1%), moderate increase (46.0%, BMI%Π = 21.7%), high increase (20.9%, BMI%Π = 41.9%) and extreme increase (6.9%, BMI%Π = 65.9%). Y25 nonâ alcoholic fatty liver disease prevalence was higher in groups with greater BMI %Î : 4.1%, 9.3%, 13.0%, and 17.6%, respectively (Pâ trend <.0001). In multivariable analyses, participants with increasing BMI%Î had increasingly greater odds of nonâ alcoholic fatty liver disease compared to the stable group: OR: 3.35 (95% CI: 2.07â 5.42), 7.80 (4.60â 13.23) and 12.68 (6.68â 24.09) for moderate, high and extreme body mass index increase, respectively. Associations were only moderately attenuated when adjusted for baseline or Y25 body mass index.ConclusionsTrajectories of weight gain during young adulthood are associated with greater nonâ alcoholic fatty liver disease prevalence in midlife independent of metabolic covariates and baseline or concurrent body mass index highlighting the importance of weight maintenance throughout adulthood as a target for primary nonâ alcoholic fatty liver disease prevention.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142937/1/liv13603.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142937/2/liv13603_am.pd

    Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon

    Get PDF
    Journal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00442-015-3250-5Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were—on average—slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.Natural Environment Research Council (NERC) TROBIT consortiumRoyal Society - University Research Fellowshi

    Twentyâ fiveâ year trajectories of insulin resistance and pancreatic βâ cell response and diabetes risk in nonalcoholic fatty liver disease

    Full text link
    Background & AimsInsulin resistance is a risk marker for nonâ alcoholic fatty liver disease, and a risk factor for liver disease progression. We assessed temporal trajectories of insulin resistance and βâ cell response to serum glucose concentration throughout adulthood and their association with diabetes risk in nonâ alcoholic fatty liver disease.MethodsThree thousand and sixty participants from Coronary Artery Risk Development in Young Adults, a prospective biâ racial cohort of adults age 18â 30 years at baseline (1985â 1986; Y0) who completed up to 5 exams over 25 years and had fasting insulin and glucose measurement were included. At Y25 (2010â 2011), nonâ alcoholic fatty liver disease was assessed by noncontrast computed tomography after exclusion of other liver fat causes. Latent mixture modelling identified 25â year trajectories in homeostatic model assessment insulin resistance and βâ cell response homeostatic model assessmentâ β.ResultsThree distinct trajectories were identified, separately, for homeostatic model assessment insulin resistance (lowâ stable [47%]; moderateâ increasing [42%]; and highâ increasing [12%]) and homeostatic model assessmentâ β (lowâ decreasing [16%]; moderateâ decreasing [63%]; and highâ decreasing [21%]). Y25 nonâ alcoholic fatty liver disease prevalence was 24.5%. Among nonâ alcoholic fatty liver disease, highâ increasing homeostatic model assessment insulin resistance (referent: lowâ stable) was associated with greater prevalent (OR 95% CI = 8.0, 2.0â 31.9) and incident (OR = 10.5, 2.6â 32.8) diabetes after multivariable adjustment including Y0 or Y25 homeostatic model assessment insulin resistance. In contrast, nonâ alcoholic fatty liver disease participants with lowâ decreasing homeostatic model assessmentâ β (referent: highâ decreasing) had the highest odds of prevalent (OR = 14.1, 3.9â 50.9) and incident (OR = 10.3, 2.7â 39.3) diabetes.ConclusionTrajectories of insulin resistance and βâ cell response during young and middle adulthood are robustly associated with diabetes risk in nonâ alcoholic fatty liver disease. Thus, how persons with nonâ alcoholic fatty liver disease develop resistance to insulin provides important information about risk of diabetes in midlife above and beyond degree of insulin resistance at the time of nonâ alcoholic fatty liver disease assessment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146427/1/liv13747_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146427/2/liv13747.pd

    An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)

    Get PDF
    The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades
    • …
    corecore